

INDIAN SCHOOL MUSCAT APPLIED MATHEMATICS (241)

CLASS : XI

SECTION A

SET A		SET B		
1	(C) $=0.28$	1	(c) $\{8,27\}$	
2	(b) $14: 11$	2	(b) 11001000	
3	(d) $\{8,27\}$	3	(a) $\log 5+\log 81$	
4	(d) $\emptyset \subset\{\{0\}, 1,2\}$	4	(a) \&?\#	
5	(b) 1100100	5	(c) Monday	
6	(d) $\frac{8}{27}$	6	(d) $\frac{7}{13}$	
7	(a) $\log 5+\log 81$	7	(d) $\emptyset \subset\{\{0\}, 1,2\}$	
8	(b) Sunday	8	(a) $\frac{1}{3}$	
9	(c) 100°	9	(C) $=0.28$	
10	(a) \&?\#	10	(c) Input Tax Credit	
11	(d) Granddaughter	11	(d) ₹ 105	
12		12	(b) $\frac{8}{27}$	
13	(b) 2^{5}	13	${ }^{\circ} \\|=$	
14	(a) $\frac{1}{3}$	14	(b) 10°	
15	(d) ₹ 105	15	(b) $14: 11$	
16	(c) Input Tax Credit	16	(b) 2^{5}	
17	(d) $\frac{7}{13}$	17	(d) Granddaughter	
18	(b) $\mathrm{B}-(A \cup C)$	18	(a) $\mathrm{B}-(A \cup C)$	
19	(a)	19	(d)	
20	(b)	20	(b)	

SECTION B

21. (a)	Epplanotion I wearange the Englisclophobetis neverse order then the postions of P, A ond Core 11, 26 ond 24 respectivel, When we odd these numbers ve get 61.Simloht, when we odd the reverse position numbers of the latters of the word PENweget, $13+22+17 i, e, 46$.

(b) GANGA is coded as 73673 .

22.	Both the conclusions are correct.	SET B -First conclusion is correct but second one is wrong.	
23.	\{DDD, DDN, DND, NDD, DNN, NDN, NND, NNN\} Set $B-S=\{R B, B R, R R, B B\}$		
24.	Any two		
25.(a)	$\begin{gathered} \text { Let } P=x \\ \begin{aligned} A & =2 x \\ \text { So } I & =x \\ t & =25 \end{aligned} \end{gathered}$	(b)	$\begin{aligned} & A=P(1+i)^{n} \\ & =1000 \times(1+5 \%)^{5} \\ & =1000 \times(1+0.05)^{5} \\ & =1000 \times(1.05)^{5} \\ & =1000 \times 1.276 \\ & =₹ 1276 \end{aligned}$

SECTION C

26. (a)	Number of boys $=9$, number of girls $=4$ Total members in a committee $=7$ (i) Number of ways forming a committee having at $\begin{aligned} \text { least } 3 \text { girls } & ={ }^{4} C_{3} \times{ }^{9} C_{4}+{ }^{4} C_{4} \times{ }^{9} C_{3} \\ & =504+84 \\ & =588 \end{aligned}$ (ii) Number of ways forming a committee having at most $\begin{aligned} { }^{3} \text { girls } & ={ }^{4} C_{3} \times{ }^{9} C_{4}+{ }^{4} C_{2} \times{ }^{9} C_{5}+{ }^{4} C_{1} \times{ }^{9} C_{6}+{ }^{4} C_{0} \times{ }^{9} C_{7} \\ & =504+756+336+36 \\ & =1632 \end{aligned}$ OR	(b)	$\begin{aligned} & \quad \frac{(n-1)!}{(n-4)!} \div \frac{(n+1)!}{(n-2)!}=\frac{5}{12} \\ & 7 n^{2}-65 n+72=0 \\ & n=8 \text { or } 9 / 7 \\ & =>n=8 \\ & \text { [set } b-n=5 \\ & \text { set } c-n=6 \text {] } \end{aligned}$
	SET B: a) (i) ${ }^{5} P_{3}=5 \times 4 \times 3=60$ (ii) $5^{3}=125$	b)	$\begin{aligned} & \frac{n!}{2(n-4)!} \div \frac{4!(n-4)!}{n!}=\frac{1}{6} \\ & n^{2}-5 n-66=0 \\ & n=11,-6 \\ & \therefore n=11 \end{aligned}$
27.	$\begin{aligned} & \text { (a) } 4 \\ & \text { SET B : Q. No. } 31 \text { (a) } 1 / 4 \end{aligned}$	(b)	$X= \pm 13$, but x cannot be - , so $x=13$
28.	(i) IGST $=0$ (ii) CGST = ₹756 (iii) SGST = ₹ 756		
29.	$\begin{aligned} & r=0.21 \text { per year } \\ & n=12 \text { months per year } \\ & \text { Effective annual interest rate }=[1+(.21 / 12)]^{12}-1 \end{aligned}$	SET -B -Q.No. 27	

	$\begin{aligned} & =[1+0.0175]^{12}-1 \\ & =(1.0175)^{12}-1 \\ & =1.2314-1 \\ & =0.2314 \\ & =23.14 \% \end{aligned}$ $\begin{aligned} i_{a} & =[1+(0.12 / 4)]^{4}-1 \\ & =(1.03)^{4}-1 \\ & =1.1255 \cdot 1 \\ & =.1255 \\ & =12.55 \% \end{aligned}$
30.	(i) required probability $=4 / 9$ Set $\mathrm{B}:$ (i) required probability $=3 / 9=1 / 3$ (ii) required probability $=6 / 9=2 / 3$ (iii) required probability $=7 / 9$ (ii) required probability $=5 / 9$ (iii) required probability $=7 / 9$
31.	(a) Consider the following events: Ei=Seed chosen is of type $\mathrm{Ai}, \mathrm{i}=1,2,3 ; \mathrm{A}=$ Seed chosen germinates. We have, $P(E 1)=4 / 10, P(E 2)=4 / 10$ and $P(E 3)=2 / 10 P(A / E 1)=45 / 100, P(A / E 2)=60 / 100, P(A / E 3)=35 / 100$ (i) $\begin{aligned} \text { Required probability }=P(A) & =P(E 1) P(A / E 1)+P(E 2) P(A / E 2)+P(E 3) P(A / E 3) \\ & =0.49 \end{aligned}$ OR (b) $S=\{G 1 G 2, G 1 B 2, B 1 G 2, B 1 B 2\}$ Let A be the event that both children are girls, B be the event that the youngest child is a girl and C be the event that at least one of the children is a girl. Then $A=\{G 1 G 2\}, B=\{G 1 G 2, B 1 G 2\}$ and $C=\{B 1 G 2, G 1 G 2, G 1 B 2\} \Rightarrow A \cap B=\{G 1 G 2\}$ and $A \cap C=\{G 1 G 2\}$ (i) Required probability $=P(A / B)=1 / 2$ (ii) Required probability $=P(A / C)=1 / 3$

SECTION D

32.	Venn Diagram -------------- 1 \qquad (i) 62 -------------------------- 1 (ii) 39 ------------------------- 1 (iii) 1 ------------------------1	
33.	(a) (i) M (ii) S (iii) R (iv) 0	$\begin{aligned} & \text { (b) Taking log on both sides ----- } 1 \text { mark } \\ & \begin{aligned} \text { Log } x & =1 / 2(1.6321)+1.9289---2 \text { mark } \\ & =0.81605+1.9289-----1 / 2 \\ & =2.74495 \approx 2.745----1 / 2 / \text { or } 2.7449 \end{aligned} \\ & \begin{array}{rl} X=\text { antilog } 2.745 & x \\ =555.9 & ------1 \end{array} \quad x=555.8 \end{aligned}$
	$\begin{aligned} & \text { SET B: (b) } \\ & \begin{aligned} \log x & =1 / 2[\log 31.67+\log 42.36-\log 9.25] \\ & =1 / 2[1.5007+1.6269-0.9661] \\ & =1 / 2[2.1615] \\ & =1.08075 \end{aligned} \\ & \text { X = antilog } 1.0808=12.04 \end{aligned}$	
34	(a) Fixed charge $=$ ₹ 200 Surcharge = ₹ 234.80 \qquad Energy Charge = ₹ 2715.50------1 Energy Tax = ₹145.80 -------------1	```(b) Total Salary = ₹ 10,22,400 Annual Bonus = ₹60,000 Gross Income = ₹ 10,82,400 ----------1 Income Tax = ₹91,480 ---------1 1/2```

	Bill = ₹ 3296.10 ------------1	Cess = ₹3659 -----------1/2 (or ₹3659.2) Tax liability = ₹ $95,139-------1$ Tax paid in 11 months = ₹82500-----1/2 Tax to be paid in the last month $=₹ 12,639---1 / 2$
35	The amount (FV) of an ordinary annuity is given by $\begin{aligned} & \mathrm{F}=\frac{C}{i}\left[(1+i)^{n}-1\right] \\ & \mathrm{C}=₹ 500, \\ & i=\frac{8}{100 \times 4}=\frac{0.08}{4}=0.02, \\ & n=10 \times 4=40 \\ & \therefore \mathrm{FV}=\frac{500}{0.02}\left[(1+0.02)^{40}-1\right] \\ & \Rightarrow \mathrm{FV}=\frac{500}{0.02}\left[(1.02)^{40}-1\right] \\ & \Rightarrow \mathrm{FV}=\frac{500}{0.02}[2.2080-1] \\ & \Rightarrow \mathrm{FV}=\frac{500 \times 1.2080}{0.02}=30,200 \end{aligned}$	

SECTION E

36. (i) Total members $=6$
\because Room A is double share room.
$\therefore \quad$ The number of ways in which room A can be filled
$=\binom{6}{2}=\frac{6!}{2!\times 4!}=15$
(ii) Now, rooms A and B can be filled with 2 members each and room C can be filled with 1 person.
\therefore Required number of ways $={ }^{2} C_{1}=2$
(iii) Required number of ways $=\binom{6}{2} \cdot\binom{4}{2}\binom{2}{1}\binom{1}{1}$

$$
=15 \times 6 \times 2 \times 1=180
$$

OR
(iii) As, room A is filled with 2 persons

Now, the remaining persons $=4$
Given that room C and D can occupy 1 person each.
\therefore The number of ways in which rooms C and D can be filled $={ }^{4} C_{1} \times{ }^{3} C_{1}=12$

37.	(i) Since each row is increasing by 10 seats, so it is an AP with first term $\mathrm{a}=30$, and common difference $\mathrm{d}=10$. So number of seats in $10^{\text {th }}$ row $=a_{10}=\mathrm{a}+9 \mathrm{~d}$ $=30+9 \times 10=120$ (ii) If no. of rows $=17$ then the middle row is the $9^{\text {th }}$ row $\begin{aligned} a_{9} & =a+8 d \\ & =30+80 \\ & =110 \text { seats } \end{aligned}$ (iii) $\begin{aligned} & \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}) \\ & 1500=\frac{\mathrm{n}}{2}(2 \times 30+(\mathrm{n}-1) 10) \\ & 3000=50 \mathrm{n}+10 \mathrm{n}^{2} \\ & \mathrm{n}^{2}+5 \mathrm{n}-300=0 \\ & \mathrm{n}^{2}+20 \mathrm{n}-15 \mathrm{n}-300=0 \\ & (\mathrm{n}+20)(\mathrm{n}-15)=0 \end{aligned}$ Rejecting the negative value, $n=15$ OR No. of seats already put up to the $10^{\text {th }}$ row $=\mathrm{S}_{10}$ $\begin{aligned} \mathrm{S}_{10} & \left.=\frac{10}{2}\{2 \times 30+(10-1) 10)\right\} \\ & =5(60+90)=750 \end{aligned}$ No. of seats left to be put $=1500-750=750$.	1/2	$1 / 2$ $1 / 2$
38.	Solution: Let $\mathrm{E}_{1}=$ The policy holder is accident prone. $\mathrm{E}_{2}=$ The policy holder is not accident prone. $E=$ The new policy holder has an accident within a year of purchasing a policy. (i) $\begin{aligned} & P(E)=P\left(E_{1}\right) \times P\left(E / E_{1}\right)+P\left(E_{2}\right) \times P\left(E / E_{2}\right) \\ & =\frac{20}{100} \times \frac{6}{10}+\frac{80}{100} \times \frac{2}{10}=\frac{7}{25} \end{aligned}$ (ii) By Bayes' Theorem, $P\left(E_{1} / E\right)=\frac{P\left(E_{1}\right) \times P\left(E / E_{1}\right)}{P(E)}$ $=\frac{\frac{20}{100} \times \frac{6}{10}}{\frac{200}{1000}}=\frac{3}{7}$ (i) $P(E)=7 / 25$ or 0.28		

